МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Ярославский государственный университет им. П.Г. Демидова Физический факультет

Проректор по	развитию	образования E.B.Сапир
"		2012 г.

УТВЕРЖДАЮ

Рабочая программа дисциплины послевузовского профессионального образования (аспирантура)

<u>Экспериментальные методы изучения физических свойств</u> <u>нанодисперсных материалов</u>

по специальности научных работников

01.04.07 Физика конденсированного состояния

Ярославль 2012

1. Цели освоения дисциплины

Целями освоения дисциплины **«Экспериментальные методы изучения физических свойств нанодисперсных материалов»** в соответствии с общими целями основной профессиональной образовательной программы послевузовского профессионального образования (аспирантура) (далее образовательная программа послевузовского профессионального образования) являются:

- усвоение аспирантами знаний о физических методах исследования свойств нанодисперсных материалов;
- изучение экспериментальных методов диагностики нанодисперсных материалов;
- формирование у аспирантов практических навыков экспериментальных исследований и изучение методик диагностики параметров нанодисперсных материалов;
- освоение методик обработки результатов экспериментальных исследований нанодисперсных материалов.

2. Место дисциплины в структуре образовательной программы послевузовского профессионального образования

Данная дисциплина относится к разделу обязательные дисциплины (подраздел специальные дисциплины отрасли науки и научной специальности) образовательной составляющей образовательной программы послевузовского профессионального образования по специальности научных работников 01.04.07 Физика конденсированного состояния.

Дисциплина «Экспериментальные методы изучения физических свойств нанодисперсных материалов» рассматривает динамику основных параметров физических и физикохимических процессов, происходящих в нанодисперсных структурах. Данная дисциплина имеет логические и содержательно-методические взаимосвязи с другими частями ООП, а именно с обязательной дисциплиной «Специальность», курсами по выбору.

Для изучения данной дисциплины необходимы «входные» знания, умения, полученные в процессе обучения по программам специалитета или бакалавриата — магистратуры, а также при изучении дисциплины «Специальность» в аспирантуре.

3. Требования к результатам освоения содержания дисциплины «Экспериментальные методы изучения физических свойств нанодисперсных материалов»

В результате освоения дисциплины **«Экспериментальные методы изучения физических свойств нанодисперсных материалов»** обучающийся должен:

знать:

основные процессы, происходящие при внешних физических и физико-химических воздействиях в нанодисперсных материалах.

уметь:

применять полученные знания для экспериментальных исследований нанодисперсных материалов, использовать полученные результаты для интерпретации и диагностики нанодисперсных материалов.

владеть:

методиками экспериментальных исследований, методиками обработки результатов измерений.

4. Структура и содержание дисциплины «Экспериментальные методы изучения физических свойств нанодисперсных материалов»

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

Nº π/ π	Раздел Дисциплины	Курс	Неделя	Виды учебной работы, включая самостоятельную работу обучающихся, и трудоемкость (в часах) Форма обуч.: очная/заочная				Формы текущего контроля успеваемо- сти (по неделям) Форма промежуточной аттестации	
				Лекций	Лабораторных	Практических	Сам. работа	работыКонтроль сам.	
1	Тема 1	1	1	1			15		реферат
2	Тема 2	1	2,3				18		реферат
3	Тема 3	1	4,5				18		реферат
4	Тема 4	1	6,7	1			19		реферат
5	Тема 5	1	8,9	1/0			17/18		реферат
6	Тема 6	1	10,11				18		реферат
7	Тема 7	1	12,13	1			19		реферат
8	Тема 8	1	14,15	1/0			15/16		реферат
				5/3			139/141		зачет

Содержание дисциплины

Тема 1

Предмет, цели и задачи курса. Основная терминология. Переход от микрообъектов к микрои нанообъектам. Область применения наноэлектроники. Классификация нанообъектов.

Тема 2.

Масс-спектрометры и детектирование кластеров. Методы подготовки образцов для исследований. Температурные измерения на масс-спектрометрах.

Тема 3.

Дифракция медленных электронов. Дифракция отраженных быстрых электронов. Полевой электронный микроскоп. Полевой ионный микроскоп.

Тема 4.

Сканирующая зондовая микроскопия. Атомно-силовая микроскопия. Магнитно-силовая микроскопия.

Тема 5.

Рентгеновская спектроскопия и дифракция. Малоугловое рентгеновское рассеяние. Рентгеновская спектроскопия поглощения EXAFS, XANS, NEXAFS.

Тема 6. Электронная спектроскопия.

Рентгеновская фотоэлектронная спектроскопия. Ультрафиолетовая электронная спектроскопия. Электронная Оже-спектроскопия.

Тема 7. Оптическая спектроскопия. Колебательная спектроскопия. Спектроскопия комбинационного рассеяния.

Тема 8. Мессбауэровская (гамма-резонансная) спектроскопия. Адсорбционная и эмиссионная мессбауэровская спектроскопия. Мессбауэровская спектроскопия на конверсионных электронах.

5. Образовательные технологии

В преподавании используются иллюстрации, таблицы, методические пособия и монографии. Знакомство с экспериментальными установками проводится на базе кафедры общей и экспериментальной физики (ОЭФ) и ЦКП «Диагностика микро- и наноструктур». В преподавании курса используются активные и интерактивные технологии проведения занятий в сочетании с внеаудиторной работой. Аспиранты имеют возможность посещать компьютерный класс, выходят в Интернет в зоне Wi-Fi, организованной в университете.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы обучающихся

В качестве средств текущего контроля используется написание в течение семестра 1 реферата на выбранную тему. Итоговая форма контроля (зачет) дает возможность выявить уровень профессиональной подготовки аспиранта по данной дисциплине.

Темы рефератов

- 1. Понятие наноструктур и нанокластеров.
- 2. Методы получения нанокластеров металлов.
- 3. Методы приготовления нанообразцов для физических исследований.
- 4. Основы криогенной техники при физических исследованиях нанообъектов.
- 5. Резонансные методы исследования строения нанообъектов.
- 6. Рентгеновские исследования наночастиц и нанокластеров.
- 7. Основы сканирующей микроскопии.
- 8. Электронный и ионный полевые микроскопы.
- 9. Электронно-зондовый метод исследования нанодисперсных систем.

Вопросы к аттестации (зачету)

- 1. Атомная масс-спектроскопия.
- 2. Вторичная ионная масс-спектроскопия.
- 3. Детекторы атомов и ионов.
- 4. Методы приготовления образцов для масс-спектроскопических исследований.
- 5. Взаимодействие потока электронов с веществом.
- 6. Дифракция медленных электронов.
- 7. Дифракция отраженных электронов.
- 8. Полевой электронный микроскоп.
- 9. Полевой ионный микроскоп.
- 10. Сканирующая зондовая микроскопия.
- 11. Атомно-силовая микроскопия.
- 12. Магнитно-силовая микроскопия.
- 13. Рентгеновские методы исследований.
- 14. Устройство рентгеновского дифрактометра.
- 15. Малоугловое рентгеновское рассеяние.
- 16. Рентгеновская спектроскопия поглощения.
- 17. Методы экспериментальной обработки данных рентгеновской спектроскопии.

- 18. Основы фотоэлектронной спектроскопии.
- 19. Ультрафиолетовая электронная спектроскопия.
- 20. Электронная Оже-спектроскопия.
- 21. Основы оптической спектроскопии.
- 22. Мессбауэровская (ГР) спектроскопия.

7. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- Суздалев И.П. Нанотехнологии. М.: Комкнига, 2006.
- Рыжонков Д.И., Левина В.В., Дзидзигури Э.Л. Наноматериалы. М.: Бином, 2010.
- Андриевский Р.А., Рагуля А.В. Наноструктурные материалы.- М.: Академия, 2005.
- Вудраф Д., Делчар Т. Современные методы исследования поверхности.- М.: Мир, 1989.
- б) дополнительная литература:
- Методы анализа поверхности п/ред. А.Зандерны. М.: Мир, 1979.
- Суздалев И.П. Гамма-резонансная спектроскопия белков и модельных соединений. М.: Наука, 1988.
- в) программное обеспечение и Интернет-ресурсы:
- для информационного обеспечения используется Интернет.
- в качестве вспомогательных **интернет-ресурсов** по дисциплине используется электронная библиотека ЯрГУ, электронная библиотека e-library.

8. Материально-техническое обеспечение дисциплины

- компьютер и мультимедийный проектор;
- экспериментальные устройства на базе кафедры ОЭФ и ЦКП.

Программа составлена в соответствии с федеральными государственными требованиями к структуре основной профессиональной образовательной программы послевузовского профессионального образования (аспирантура) (приказ Минобрнауки от 16.03.2011 г. № 1365) с учетом рекомендаций, изложенных в письме Минобрнауки от 22.06.2011 г. № ИБ – 733/12.

Программа одобрена на заседании кафед	ры общей и экспериментальной физики
октября 2012 г. (протокол №)	
Заведующий кафедрой	Алексеев В.П., кандидат физматем. наук, доцент
Автор	Алексеев В.П., кандидат физматем. наук, доцент