МИНОБРНАУКИ РОССИИ Ярославский государственный университет им. П.Г. Демидова

Кафедра общей и физической химии

УТВЕРЖДАЮ

Декан факультета биологии и экологии

О.А.Маракаев

«<u>20</u>» <u>мая</u> 2021 г.

Рабочая программа дисциплины «Компьютерное моделирование термодинамики и кинетики процессов в живых системах»

Направление подготовки 04.03.01 Химия

Направленность (профиль) «Медицинская и фармацевтическая химия»

Форма обучения очная

Программа одобрена на заседании кафедры от 14 мая 2021 г., протокол № 8

Программа одобрена НМК факультета биологии и экологии протокол N 7 от 17 мая 2021 г.

1. Цели освоения дисциплины

Целью освоения дисциплины является формирование у студентов системы знаний и навыков, необходимых для проведения вычислительного эксперимента по моделированию термодинамики и кинетики химических процессов с участием биомолекул на базе численных методов.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится части, формируемой участниками образовательных отношений, блока 1 (Б1.В.ДВ.04.02).

Для освоения данной дисциплины студенты должны знать основы дисциплин «Неорганическая химия», «Аналитическая химия», «Органическая химия», «Физико-химические методы анализа», «Основы квантовой механики и квантовой химии», а также, основные операции высшей математики (дифференцирование, интегрирование, решение дифференциальных уравнений), основы численных методов, владеть базовыми навыками работы на персональном компьютере.

Знания и навыки, полученные при изучении дисциплины, необходимы для выполнения выпускной работы, в научно-исследовательской деятельности, а также для продолжения обучения в магистратуре.

3. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих элементов компетенций в соответствии с ФГОС ВО, ОП ВО и приобретения следующих знаний, умений, навыков и (или) опыта деятельности:

Формируемая компетенция (код и	Индикатор достижения компетенции	Перечень планируемых результатов обучения		
формулировка)	(код и формулировка)			
	Профессионал	ьные компетенции		
ПК-1	ПК-1.1	Знать:		
Способен	Планирует отдельные	– теоретические основы статистического расчета		
проводить НИР и	стадии исследования	термодинамических величин;		
НИОКР, выбирать	при наличии общего	- теоретические основы численного		
и использовать	плана НИР.	моделирования кинетики химических реакций.		
технические		Уметь:		
средства и методы		 применять теоретические знания при 		
испытаний для		планировании численного эксперимента		
решения		(моделирования);		
исследовательских		Владеть навыками:		
задач химической		 составления входных файлов и кинетических 		
направленности,		схем для проведения компьютерного		
поставленных		моделирования термодинамики и кинетики.		
специалистом	ПК-1.3	Знать:		
более высокой	Выбирает технические	– аналитические и численные методы решения		
квалификации.	средства реализации и	прямой и обратной кинетических задач.		
	методы испытаний (из	Уметь:		
	набора имеющихся)	– выбирать наилучшие методы для		
	для решения	моделирования термодинамики и кинетики		
	поставленных задач	биохимических процессов.		
	НИР.	Владеть навыками:		
		– анализа достоинств и недостатков различных		
		методов моделирования.		

	ПК-1.5	Знать:
	Обрабатывает	– методы определения кинетических параметров
	результаты	на основе экспериментальных данных и
	экспериментальных и	результатов моделирования.
	теоретических	Уметь:
	исследований.	– определять кинетические параметры на основе
		результатов кинетического моделирования;
		– рассчитывать термодинамические параметры
		отдельных веществ и химических реакций с
		применением методов квантовой химии.
		Владеть навыками:
		– анализа результатов кинетического
		моделирования и квантово-химического расчета
		термодинамических параметров.
ПК-2	ПК-2.4	Знать:
Способен	Способен изучать	– основные принципы, лежащие в основе
осуществлять	реакционную	компьютерного моделирования термодинамики
разработку	способность	и кинетики процессов в живых системах.
методов	органических	Уметь:
получения и	соединений с	– осуществлять компьютерное моделирование
контроля	применением типовых	термодинамики и кинетики биохимических
соединений с	экспериментальных и	процессов.
целевыми	расчётных методов.	Владеть навыками:
характеристиками		 работы в специализированных программах для
под руководством		квантово-химических расчетов и моделирования
специалиста более		кинетики биохимических реакций.
высокой		
квалификации.		

4. Объем, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 акад.ч.

№ п/п	(1 / 1 /		Виды учебных занятий, включая самостоятельную работу студентов, и их трудоемкость (в академических часах) Контактная работа					Формы текущего контроля успеваемости Форма промежуточной	
			лекции	практические	лабораторные	консультации	аттестационные испытания	самостоятельная работа	аттестации (по семестрам) Формы ЭО и ДОТ (при наличии)
1	Основы статистической термодинамики. Понятие о функциях распределения и суммах по состояниям.	7	22	27		6		30	Опрос, расчетное задание
2	Компьютерное моделирование термодинамики и химического равновесия процессов в живых системах.	7	15	27		5		28	Опрос, контрольная работа № 1
3	Моделирование кинетики биохимических процессов.	7	17	27		6		29	Опрос, контрольная работа № 2
	ИТОГО		54	81		17	0,3 0,3	12,7 99,7	Зачет

4.1 Информация о реализации дисциплины в форме практической подготовки

Информация о разделах дисциплины и видах учебных занятий, реализуемых в форме практической подготовки

№ п/п	Темы (разделы) дисциплины, их содержание		Виды учебных занятий, включая самостоятельную работу студентов, и их трудоемкость (в академических часах) Контактная работа					Место проведения занятий в форме практической подготовки	
		Семестр	лекции	практические	лабораторные	консультации	аттестационные испытания	самостоятельная работа	
1	Основы статистической термодинамики. Понятие о функциях распределения и суммах по состояниям.	7		27					Факультет биологии и экологии ЯрГУ
2	Компьютерное моделирование термодинамики и химического равновесия процессов в живых системах.	7		27					Факультет биологии и экологии ЯрГУ
3	Моделирование кинетики биохимических процессов.	7		27					Факультет биологии и экологии ЯрГУ
	ИТОГО			81					

Содержание разделов дисциплины

1. Основы статистической термодинамики

- 1.1 Основные постулаты статистической термодинамики.
- 1.2 Понятие о функциях распределения и суммах по состояниям. Статистические аналоги термодинамических величин.
- 1.3 Поступательная, электронная и ядерная составляющая суммы по состояниям. Вращательная составляющая суммы по состояниям. Колебательная составляющая суммы по состояниям.

2. Компьютерное моделирование термодинамики и химического равновесия процессов в живых системах.

- 2.1 Особые точки на ППЭ. Гессиан. Диагональные элементы гессиана и их связь с нормальными частотами колебаний. Поправки к частотам колебаний.
- 2.2 Квантово-химический расчет термодинамических функций. Учет различных вкладов в энтальпию.

Практическая работа № 1. Квантово-химический расчет энергий разрыва связи в биоантиоксидантах.

Практическая работа № 2. Квантово-химическое моделирование обратимого связывания кислорода с моделью гема.

3. Моделирование кинетики биохимических процессов

- 3.1 Прямая и обратная кинетические задачи. Кинетика сложных химических процессов. Метод квазистационарных концентраций.
- 3.2 Численное решение прямой кинетической задачи. Влияние параметров численного интегрирования на сходимость и точность решения. Сравнение решений аналитическими и численными методами для простых реакций.
- 3.3. Моделирование кинетики ферментативных реакций. Ферментативный катализ и ингибирование ферментов.
- 3.3 Моделирование кинетики сложных реакций. Моделирование кинетики цепных реакций в отсутствие и присутствии ингибитора.
- 3.4 Решение обратной кинетической задачи методом компьютерного моделирования.

Практическая работа № 3. Моделирование кинетики ферментативной реакции.

Практическая работа № 4. Моделирование кинетики цепной реакции окисления полиненасыщенных жирных кислот молекулярным кислородом.

Практическая работа № 5. Моделирование кинетики окисления полиненасыщенных жирных кислот в присутствии ингибиторов различных классов: фенолы, ионы металлов, нитроксильные радикалы.

5. Образовательные технологии, в том числе технологии электронного обучения и дистанционные образовательные технологии, используемые при осуществлении образовательного процесса по дисциплине

В процессе обучения используются следующие образовательные технологии:

Академическая лекция (или лекция общего курса) – последовательное изложение материала, осуществляемое преимущественно в виде монолога преподавателя с применением мультимедийных презентаций. Требования к академической лекции: современный научный уровень и насыщенная информативность, убедительная аргументация, доступная и понятная речь, четкая структура и логика, наличие ярких примеров, научных доказательств, обоснований, фактов.

Практическое занятие – занятие, посвященное освоению конкретных умений и навыков и закреплению полученных на лекции знаний.

Консультации — групповые занятия, являющиеся одной из форм контроля самостоятельной работы студентов.

Для организации самостоятельной работы студентов и проведения текущего контроля успеваемости (в форме промежуточных и итогового теста) используются дистанционные технологии в виде электронного учебного курса (ЭУК) в системе Moodle ЯрГУ. В ЭУК имеются электронные конспекты лекций, задания к практическим занятиям, задания для самостоятельной работы. В ЭУК сохраняются оценки, полученные учащимися в процессе изучения курса.

6. Перечень лицензионного и (или) свободно распространяемого программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине

В процессе осуществления образовательного процесса используются:

- операционные системы семейства Microsoft Windows;
- программы Microsoft Office;
- программа Adobe Acrobat Reader;
- браузеры Mozilla Firefox, Google Chrome;
- программа Firefly 8.0 (проведение квантово-химических расчетов, свободная лицензия, http://classic.chem.msu.su/gran/firefly/index.html);
- программа wxMacMolPlt 7.7 (визуализация результатов квантово-химических расчетов, свободная лицензия, https://brettbode.github.io/wxmacmolplt/).
- программа для численного моделирования кинетики сложных химических реакций «Кинетика 2012».

7. Перечень современных профессиональных баз данных и информационных справочных систем, используемых при осуществлении образовательного процесса по дисциплине (при необходимости)

- 1. NIST Computational Chemistry Comparison and Benchmark DataBase http://cccbdb.nist.gov/
- 2. NIST Chemical Kinetics Database. https://kinetics.nist.gov/kinetics/. База данных содержит информацию о константах скорости и энергиях активации элементарных реакций, протекающих в газовой фазе.
- 3. NIST Solution Kinetics Database. https://kinetics.nist.gov/solution/. База данных содержит информацию о константах скорости и энергиях активации элементарных реакций, протекающих в жидкой фазе.
- 4. Автоматизированная библиотечно-информационная система «БУКИ-NEXT» http://www.lib.uniyar.ac.ru/opac/bk cat find.php

8. Перечень основной и дополнительной учебной литературы, ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости), рекомендуемых для освоения дисциплины

а) основная литература

- 1. Черепанов, В.А. Химическая кинетика: учебное пособие для вузов / В.А. Черепанов, Т.В. Аксенова. Москва: Издательство Юрайт, 2021. 130 с. (Высшее образование). ISBN 978-5-534-10878-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. https://urait.ru/bcode/493663
- 2. Ермаков, А.И. Квантовая механика и квантовая химия. В 2 ч.
- Часть 1. Квантовая механика : учебник и практикум для вузов / А.И. Ермаков. Москва : Издательство Юрайт, 2021.-183 с. (Высшее образование). ISBN 978-5-534-00127-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/471665
- Часть 2. Квантовая химия : учебник и практикум для вузов / А.И. Ермаков. Москва : Издательство Юрайт, 2021.-402 с. (Высшее образование). ISBN 978-5-534-00128-0. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/471666

б) дополнительная литература

1. Барановский В.И. Квантовая механика и квантовая химия. – М.: Академия, 2008. – 383 с. ISBN 978-5-7695-3961-9.

http://www.lib.uniyar.ac.ru/opac/bk_cat_card.php?rec_id=1219858&cat_cd=YARSU

- 2. Тихонов И.В. Химическая кинетика [Электронный ресурс]: практикум. / И.В. Тихонов, А.В. Сирик, А.М. Гробов; Яросл. гос. ун-т им. П.Г. Демидова Ярославль: ЯрГУ, 2020. 48 с. http://www.lib.uniyar.ac.ru/edocs/iuni/20200303.pdf
- 3. Ефремов, Ю.С. Статистическая физика и термодинамика: учебное пособие для вузов / Ю.С. Ефремов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 209 с. (Высшее образование). ISBN 978-5-534-05152-0. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/492840

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине включает в свой состав специальные помещения:

- учебные аудитории для проведения занятий лекционного типа;
- учебные аудитории для проведения практических занятий (семинаров);
- учебные аудитории для проведения групповых и индивидуальных консультаций;
- учебные аудитории для проведения текущего контроля и промежуточной аттестации;
- помещения для самостоятельной работы;

A RTOn.

- помещения для хранения и профилактического обслуживания технических средств обучения.

Специальные помещения укомплектованы средствами обучения, служащими для представления учебной информации большой аудитории (ноутбук и/или персональный компьютер, мультимедиа-проектор, настенный проекционный экран).

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, хранящиеся на электронных носителях и обеспечивающие тематические иллюстрации, соответствующие рабочей программе дисциплины.

Для проведения квантово-химических расчетов и кинетического моделирования используется компьютерная техника, позволяющая осуществлять такие расчеты (персональные компьютеры и/или ноутбуки).

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

Число посадочных мест в лекционной аудитории больше либо равно списочному составу потока, а в аудитории для практических занятий (семинаров) — списочному составу группы обучающихся.

тытор.		
	- Fi	
Доцент кафедры общей и физической		
химии, к.х.н.		А.М. Гробов
должность, ученая степень	подпись	И.О. Фамилия

Приложение №1 к рабочей программе дисциплины «Компьютерное моделирование термодинамики и кинетики процессов в живых системах»

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

1. Типовые контрольные задания и иные материалы, используемые в процессе текущего контроля успеваемости

Задания для самостоятельной работы

(проверка осуществляется путем опроса)

Задания по теме № 1 «Основы статистической термодинамики»

1. Раздел 1.1. В сосуде находится 1 моль а) гелия, б) азота. Чему равно число степеней свободы такой системы. Какова размерность фазового пространства?

Постройте фазовую траекторию для тела массы m, которое движется под действием упругой силы F = -kx вдоль прямой линии.

- 2. Раздел 1.2. В некоторой молекуле есть три электронных уровня энергии: 0, 1500 и 2800 см⁻¹. Нижний уровень невырожден, средний трехкратно вырожден, высший пятикратно вырожден. Найдите среднюю электронную энергию молекулы и заселенность каждого уровня при 2000 К.
- 3. Раздел 1.3. Сравните мольные теплоемкости газообразных воды и углекислого газа при 300 К в предположении, что вкладами электронных и колебательных движений можно пренебречь.

При каком значении вращательного квантового числа заселенность вращательного уровня в основном электронно-колебательном состоянии молекулы S_2 ($B=0.296~{\rm cm}^{-1}$) максимальна при температуре 300 К?

Рассчитайте молекулярную вращательную сумму по состояниям Q_{rot} и вращательные вклады в мольные энтропию и приведенную энергию Гиббса для молекулярного фтора при 1500 К. Вращательная постоянная F_2 равна B=0.89 см⁻¹.

Рассчитайте молекулярную поступательную сумму по состояниям Q_{transl} и поступательные вклады в мольные энтропию и приведенную энергию Гиббса для молекулярного фтора F_2 при температуре 2000 К и давлении 1 атм.

Определите среднюю скорость и наиболее вероятную скорость атомов гелия при температуре 300 К.

Определите число симметрии для молекулы циклобутана.

Рассчитайте молекулярную колебательную сумму по состояниям Q_{vib} и колебательный вклад в мольную приведенную энергию Гиббса для оксида углерода (IV) при 500 К. Частоты колебаний: $v_1 = 1388.2$ см⁻¹, $v_2 = 667.4$ см⁻¹ (двукратное вырождение), $v_3 = 2349.2$ см⁻¹.

Вычислите мольную теплоемкость газообразной окиси азота NO при $T=300~{\rm K}.$ Разность энергий основного и первого возбужденного электронных состояний равна

 $(\varepsilon_1 - \varepsilon_0)$ / $k = \varepsilon$ / k = 172 K, статистические веса состояний $g_0 = 2$, $g_1 = 4$, межъядерное расстояние равно $1.1508 \cdot 10^{-8}$ см. Вращательное движение молекул описать классически, колебательные степени свободы не учитывать.

Задания по теме № 2 «Компьютерное моделирование термодинамики и химического равновесия процессов в живых системах»

- 1. Раздел 2.1. Смоделируйте молекулы аденина, цистеина, L-глюкопиранозы и рассчитайте для них гессиан. Соотнесите частоты колебаний с их типом.
- 2. Раздел 2.2. Смоделируйте молекулы глицина, тимина, аскорбиновой кислоты и рассчитайте для них гессиан. Рассчитайте энтальпию и энтропию данных молекул при 310 К.

Задания по теме № 3 «Моделирование кинетики биохимических процессов»

1. Раздел 3.1. Для реакции $NO_2Cl \rightarrow NO_2 + 1/2Cl_2$ предложен следующий двухстадийный механизм:

$$NO_2Cl \rightarrow NO_2 + Cl \cdot (k_1)$$

 $NO_2Cl + Cl \cdot \rightarrow NO_2 + Cl_2 \cdot (k_2)$

Используя метод квазистационарных концентраций, выведите уравнение для скорости разложения NO_2Cl .

2. Раздел 3.3. Введение в окисляющуюся линолевую кислоту (RH) производных гидрохинона (QH₂) тормозит процесс окисления, вследствие чего на кинетической кривой появляется период индукции (τ), который связан с концентрацией ингибитора и скоростью инициирования соотношением $\tau = f[\text{InH}]/W_i$, где f — стехиометрический коэффициент ингибирования, который для ингибиторов класса фенолов равен 2. Данный процесс может быть описан кинетической схемой:

$$I \xrightarrow{+O_{2} + RH} RO_{2}^{\bullet} \qquad (0) \quad W_{i} = 1 \cdot 10^{-8}$$

$$RO_{2}^{\bullet} + RH \xrightarrow{+O_{2}} ROOH + RO_{2}^{\bullet} \qquad (2) \quad k_{2} = 70$$

$$RO_{2}^{\bullet} + RO_{2}^{\bullet} \to \text{продукты} \qquad (6) \quad 2k_{6} = 5 \cdot 10^{7}$$

$$RO_{2}^{\bullet} + QH_{2} \to ROOH + QH^{\bullet} \qquad (7) \quad k_{7} = 3 \cdot 10^{6}$$

$$QH^{\bullet} + QH^{\bullet} \to QH_{2} + Q \qquad (9) \quad k_{9} = 1 \cdot 10^{8}$$

$$QH^{\bullet} + O_{2} \to Q + RO_{2}^{\bullet} \qquad (10) \quad k_{10}$$

Феноксильные радикалы QH $^{\bullet}$ способны взаимодействовать с кислородом по реакции (10) с образованием радикала HO $_2$ $^{\bullet}$, который в представленной кинетической схеме окисления заменен на RO $_2$ $^{\bullet}$. Данная реакция ведет к продолжению кинетической цепи окисления, поэтому эффективность ингибирования снижается. Значения k_{10} для различных гидрохинонов могут варьироваться от 0 до $1\cdot 10^4$. На основании моделирования данной схемы исследовать:

- 1) Зависимость величины отношения периодов индукции τ/τ_0 (где τ_0 период индукции при $k_{10}=0$, τ период индукции при произвольном k_{10}) от величины k_{10} (моделирование провести для $k_{10}=0$, 100, 300, 1000, 3000, 10000).
- 2) Зависимость начальной скорости (W_2) окисления от величины k_{10} (для тех же значений k_{10}).

При моделировании принять [RH] = 3, [QH₂] = $1 \cdot 10^{-5}$, [O₂] = $1.5 \cdot 10^{-3}$.

Расчетное задание

(варианты индивидуальны для каждого студента, приведены примеры двух вариантов)

Вариант 1

Рассчитать энтропию S° , высокотемпературную составляющую энтальпии $H^{\circ}_{T} - H^{\circ}_{298}$ и теплоемкость C_{p}° вещества в состоянии идеального газа при давлении 1 бар = $1 \cdot 10^{5}$ Па и различных температурах. Сравнить результаты расчета со справочными данными (в графической форме).

$$O_2$$
 $\omega = 1579.8 \text{ cm}^{-1}, B = 1.447 \text{ cm}^{-1}, \rho_0 = 3.$

 $\underline{\text{http://webbook.nist.gov/cgi/cbook.cgi?ID=C7782447\&Units=SI\&Mask=1\&Type=JANAFG\&Table=on\#JANAFG}$

Вариант 2

Рассчитать энтропию S° , высокотемпературную составляющую энтальпии $H^{\circ}{}_{T}-H^{\circ}{}_{298}$ и теплоемкость C_{p}° вещества в состоянии идеального газа при давлении 1 бар = $1\cdot 10^{5}$ Па и различных температурах. Сравнить результаты расчета со справочными данными (в графической форме).

NO $\omega = 1904.4 \text{ cm}^{-1}, B = 1.705 \text{ cm}^{-1}, \rho_0 = 4.$

 $\frac{http://webbook.nist.gov/cgi/cbook.cgi?ID=C10102439\&Units=SI\&Mask=1\&Type=JANAFG\&Table=on\#JANAFG}{Table=on\#JANAFG}$

Контрольная работа № 1

(приведены примеры двух вариантов, каждый студент получает индивидуальное задание)

Вариант 1

1. Не проводя вычислений, сравните теплоемкости C_V оксида азота N_2O и оксида углерода CO_2 при 100 K и 1000 K с использованием следующих молекулярных постоянных:

Монокуно	Часто	ты колебаний	B, cm ⁻¹	
Молекула	v_1	v_2	B, CM	
CO_2	1334	667 ($d_2 = 2$)	2350	0,390
N ₂ O	1277	$588 (d_2 = 2)$	2223	0,419

- **2.** По данным первой задачи рассчитайте молекулярную вращательную сумму по состояниям и вращательную составляющую энтропии для молекулы CO₂ при 300 К.
- **3.** По данным первой задачи рассчитайте колебательную сумму по состояниям и колебательную составляющую теплоемкости C_p для молекулы N_2O при 1000 К.
- **4.** Смоделируйте молекулу аланина. Рассчитайте энтальпию, энтропию и энергию Гиббса данной молекулы при 310 К.

Вариант 2

NO $\omega = 1904.4 \text{ cm}^{-1}, B = 1.705 \text{ cm}^{-1}, \rho_0 = 4.$

Для представленной молекулы найдите:

- **1.** Вероятность нахождения молекулы на первом возбужденном колебательном уровне при 2000 К.
- **2.** Молекулярную поступательную сумму по состояниям и поступательную составляющую энергии Гельмгольца при 400 К и давлении 1 атм.
- **3.** Молекулярную колебательную сумму по состояниям и колебательную составляющую энтальпии при 1500 К.
- **4.** Смоделируйте молекулу витамина Е. Рассчитайте энергию разрыва связи О-Н в данной молекуле при 310 К.

Контрольная работа № 2

(каждый студент получает индивидуальное задание)

Задание 1.

Механизм окисления линолевой кислоты (LH), ингибированного гидрохиноном (QH $_2$) при отсутствии квадратичного обрыва цепей описывается упрощенной схемой:

$$I \xrightarrow{+O_2 + LH} L^{\bullet} \qquad W_i$$

$$L^{\bullet} + O_2 \rightarrow LO_2^{\bullet} \qquad k_1$$

$$LO_2^{\bullet} + LH \rightarrow LOOH + L^{\bullet} \qquad k_2$$

$$LO_2^{\bullet} + QH_2 \rightarrow LOOH + QH^{\bullet} \qquad k_7$$

$$QH^{\bullet} + QH^{\bullet} \rightarrow QH_2 + Q \qquad k_9$$

Выведите кинетическое уравнение для скорости процесса ингибированного окисления. Определите порядки реакции по линолевой кислоте, гидрохинону, кислороду и инициатору.

Задание 2.

Рассмотрите механизм ферментативного катализа с двумя промежуточными комплексами:

$$E+S \xrightarrow{k_1} ES \xrightarrow{k_2} EP \xrightarrow{k_3} E+P$$

Используя метод квазистационарных концентраций и уравнение материального баланса, покажите, что скорость реакции описывается уравнением типа Михаэлиса-Ментен. Найдите выражения для эффективной максимальной скорости и эффективной константы Михаэлиса через константы скорости отдельных стадий.

Задание 3.

Введение в окисляющуюся линолевую кислоту (LH) ингибитора (InH) тормозит процесс окисления, вследствие чего на кинетической кривой появляется период индукции (τ), который связан с концентрацией ингибитора и скоростью инициирования соотношением $\tau = f[\text{InH}]/W_i$, где f — стехиометрический коэффициент ингибирования, который для ингибиторов класса фенолов равен 2. Данный процесс может быть описан кинетической схемой:

$$I \xrightarrow{+O_{2} + LH} L^{\bullet} \qquad (0) \qquad W_{i} = 1 \cdot 10^{-9}$$

$$LO_{2}^{\bullet} + LH \xrightarrow{+O_{2}} LOOH + LO_{2}^{\bullet} \qquad (2) \qquad k_{2} = 70$$

$$LO_{2}^{\bullet} + LO_{2}^{\bullet} \to \text{продукты} \qquad (6) \qquad 2k_{6} = 5 \cdot 10^{7}$$

$$LO_{2}^{\bullet} + \text{InH} \to LOOH + \text{In}^{\bullet} \qquad (7) \qquad k_{7}$$

$$RO_{2}^{\bullet} + \text{In}^{\bullet} \to ROOIn \qquad (8) \qquad k_{8} = 1 \cdot 10^{8}$$

На основании моделирования данной схемы исследовать зависимость ошибки, возникающей при определении периода индукции по методу касательной, от силы ингибитора (величины k_7). Моделирование провести для следующих значений k_7 : $1\cdot 10^5$, $3\cdot 10^5$, $1\cdot 10^6$, $3\cdot 10^6$ при скоростях инициирования $W_i=1\cdot 10^{-8}$ и $1\cdot 10^{-7}$ (использовать [InH] = $1\cdot 10^{-5}$ и $1\cdot 10^{-4}$ соответственно). [LH] = 3, [O₂] = 0,0015. Сделать вывод, при какой W_i лучше проводить измерение периода индукции в эксперименте.

Критерии оценивания результатов текущего контроля успеваемости

Форма текущего	Правила выставления оценки
контроля успеваемости	
Опрос	- Отлично выставляется за полный ответ на поставленный вопрос с включением в содержание ответа рассказа (лекции) преподавателя, материалов учебников, дополнительной литературы без наводящих вопросов; полное выполнение задания Хорошо выставляется за полный ответ на поставленный вопрос в объеме рассказа (лекции) преподавателя с включением в содержание ответа материалов учебников с четкими положительными ответами на наводящие вопросы преподавателя; выполнение задания с незначительными
	ошибками Удовлетворительно выставляется за ответ, в котором озвучено более половины требуемого материала, с положительным ответом на большую часть наводящих вопросов; или обучающийся приступил к выполнению задания, наметил алгоритм решения, но допустил серьезные ошибки на этапах решения Неудовлетворительно выставляется за ответ, в котором озвучено менее половины требуемого материала или не озвучено главное в содержании вопроса с отрицательными ответами на наводящие вопросы, или обучающийся отказался от ответа без предварительного объяснения уважительных причин; или обучающийся не приступал к выполнению задания
TC C	или не смог выработать алгоритм его решения.
Контрольная работа, расчетное задание	- Отлично выставляется, если обучающийся выполнил работу (общий процент выполнения заданий не менее 90%), демонстрирует знания теоретического и практического материала по теме работы, даёт правильный алгоритм решения Хорошо выставляется, если обучающийся выполнил работу с небольшими недочетами (общий процент выполнения заданий не менее 70%), демонстрирует знания теоретического и практического материала по теме работы, допуская незначительные неточности при их применении и выборе алгоритма решения Удовлетворительно выставляется, если обучающийся в целом выполнил работу (общий процент выполнения заданий не менее 50%), допуская существенные недочеты, в том числе при выборе алгоритма решения Неудовлетворительно выставляется, если обучающийся не справился с выполнением задания (общий процент выполнения заданий менее 50%), не смог выбрать алгоритм его решения, продемонстрировав существенные пробелы в знаниях основного учебного материала.

Фонды оценочных средств по дисциплине предусматривают проверку индикаторов достижения компетенций

2. Список вопросов и (или) заданий для проведения промежуточной аттестации

Список вопросов к зачету

(зачет выставляется по результатам собеседования со студентом при условии успешного выполнения расчетного задания и контрольных работ № 1 и 2)

- 1. Статистическое описание термодинамических систем с применением классического и квантового подходов.
- 2. Основные постулаты статистической термодинамики. Теорема Лиувилля.
- 3. Сумма по состояниям, ее определение для дискретных и непрерывных распределений.
- 4. Распределение Больцмана. Плотность вероятности.
- 5. Квантовые статистики (Бозе-Эйнштейна и Ферми-Дирака).
- 6. Статистические аналоги термодинамических величин.
- 7. Поступательная составляющая суммы по состояниям.
- 8. Электронная и ядерная составляющая суммы по состояниям.
- 9. Статистические аналоги термодинамических величин для одноатомного идеального газа.
- 10. Жесткий ротатор. Вращательная составляющая суммы по состояниям.
- 11. Гармонический осциллятор. Колебательная составляющая суммы по состояниям.
- 12. Расчет статистических сумм и термодинамических параметров квантово-химическими методами.
- 13. Учет вкладов различных видов движения в энтальпию.
- 14. Компьютерное моделирование термодинамики биохимических процессов.
- 15. Компьютерное моделирование равновесия в биохимических процессах.
- 16. Кинетика сложных химических процессов. Метод квазистационарных концентраций.
- 17. Методы численного решения прямой кинетической задачи.
- 18. Влияние параметров численного интегрирования на сходимость и точность решения.
- 19. Моделирование кинетики последовательно-параллельной реакции.
- 20. Моделирование кинетики неразветвленной цепной реакции неингибированного окисления липидов при различных концентрациях кислорода.
- 21. Моделирование кинетики ингибированной цепной реакции окисления липидов.
- 22. Моделирование кинетики вырождено-разветвленной цепной реакции автоокисления липидов.
- 23. Моделирование кинетики ферментативной реакции.
- 24. Методы решения обратной кинетической задачи с использованием компьютерного моделирования.

Правила выставления оценки на зачете

Критерием допуска к зачету является выполнение всех мероприятий текущей аттестации на оценку не ниже, чем «удовлетворительно». Устный ответ на зачете оценивается по 2-х балльной системе.

Отметка «зачтено» ставится, если:

- знания отличаются глубиной и содержательностью, дается полный исчерпывающий ответ, как на основные вопросы к зачету, так и на дополнительные;
- студент свободно владеет научной терминологией;
- ответ студента структурирован, содержит анализ существующих теорий, научных школ, направлений и их авторов по вопросу билета;
- логично и доказательно раскрывает проблему, предложенную для решения;
- ответ характеризуется глубиной, полнотой и не содержит фактических ошибок;
- ответ иллюстрируется примерами, в том числе из собственной практики;

- студент демонстрирует умение аргументировано вести диалог и научную дискуссию.

Отметка «незачтено» ставится, если:

- обнаружено незнание или непонимание студентом сущностной части дисциплины;
- содержание вопросов билета не раскрыто, допускаются существенные фактические ошибки, которые студент не может исправить самостоятельно;
- на большую часть дополнительных вопросов по содержанию зачета студент затрудняется дать ответ или не дает верных ответов.

Приложение №2 к рабочей программе дисциплины «Компьютерное моделирование термодинамики и кинетики процессов в живых системах»

Методические указания для студентов по освоению дисциплины

Основной формой изложения учебного материала по дисциплине «Компьютерное моделирование термодинамики и кинетики процессов в живых системах» являются лекции с применением презентаций. Это связано с тем, что изучаемый курс содержит большое количество формул и схем. Лекционный курс предоставляется студенту в электронном виде. Вместе с тем необходимо учитывать, что в ходе лекции многие примеры разбираются и иллюстрируются преподавателем на доске. Без конспектирования данных записей невозможно освоить курс в полном объеме. В процессе изучения дисциплины рекомендуется регулярное повторение пройденного лекционного материала. Материал, законспектированный на лекциях, необходимо дома еще раз прорабатывать и при необходимости дополнять информацией, полученной на консультациях, практических занятиях или из учебной литературы. Большое внимание должно быть уделено выполнению домашней работы. В качестве заданий для самостоятельной работы дома студентам предлагаются задачи, аналогичные разобранным на лекциях или немного более сложные, которые являются результатом объединения нескольких базовых задач. Освоить вопросы, излагаемые в процессе изучения дисциплины самостоятельно студенту крайне сложно, поэтому посещение всех аудиторных занятий является совершенно необходимым.

Полученные на лекциях теоретические знания закрепляются и применяются на практических занятиях, посвященных моделированию термодинамических свойств биомолекул с применением методов квантовой химии и кинетики биохимических процессов с использованием численных методов. Также студенты должны дополнительно осуществлять подобные расчеты самостоятельно, что должно помочь лучше освоить изучаемый курс, а также развить умения и навыки, которые пригодятся при выполнении выпускной квалификационной работы. Кроме того, в рамках практических занятий происходит разбор основных аналитических задач, которые могут позволить лучше понять изучаемый материал.

Для проверки и контроля усвоения теоретического материала и приобретенных практических навыков в течение обучения проводятся мероприятия текущей аттестации в виде расчетного (домашнего) задания и двух самостоятельных работ. Также проводятся консультации (при необходимости) по разбору заданий для самостоятельной работы, которые вызвали затруднения. В конце семестра студенты сдают зачет, который выставляется по результатам устного собеседования при условии успешного прохождения всех мероприятий текущей аттестации.

Учебно-методическое обеспечение самостоятельной работы студентов по дисциплине

Для самостоятельной работы рекомендуется использовать литературу, указанную в разделе 8 данной программы.

Для самостоятельного подбора литературы рекомендуется использовать:

- 1. http://www.lib.uniyar.ac.ru/opac/bk_cat_find.php Электронная библиотека учебных материалов ЯрГУ: более 3000 полных текстов учебных и учебно-методических материалов по основным изучаемым дисциплинам, изданных в университете.
- 2. <u>https://urait.ru/</u> Электронно-библиотечная система «Юрайт»: мультидисциплинарный ресурс (учебная, научная и художественная литература, периодика)
- 3. http://window.edu.ru/catalog Информационная система "Единое окно доступа к образовательным ресурсам": свободный доступ к интегральному каталогу образовательных интернет-ресурсов и к электронной библиотеке учебно-методических материалов для общего и профессионального образования.